The fundamental physical constants doctrine hides the failure of popular physical theories including legacy quantum mechanics and both special and general relativity. The so-called "fundamental constants" are in fact the greatest body of unexplained data in physics. The doctrine acts to obscure the now obvious fact that these unexplained observations comprise basic unsolved mysteries in physics. Instead of addressing these basic questions, the doctrine teaches that these observations are essentially a sort of "no-go zone" for theoretical physicists. First, these observations are typically confined to a short Appendix A in physics books, wrongly labelled "fundamental constants" (Fig. 1). Second, "natural units" in basic equations help hide the fact that the measured values of these "constants" remains unexplained although these values are used as "input parameters". Third, accepted interrelationships or dependencies among many of these constants indicate mathematically that they contain redundant information and could not be "fundamental". Finally, binary mechanics is thus far the only comprehensive physical theory to derive the values of the so-called fundamental constants from first principles [1].
by James J Keene PhD
Journal of Binary Mechanics, 21st century physics with quantized space, time and energy
Showing posts with label vacuum. Show all posts
Showing posts with label vacuum. Show all posts
Thursday, October 22, 2020
Fundamental Physical Constants Doctrine
Abstract and Introduction
The fundamental physical constants doctrine hides the failure of popular physical theories including legacy quantum mechanics and both special and general relativity. The so-called "fundamental constants" are in fact the greatest body of unexplained data in physics. The doctrine acts to obscure the now obvious fact that these unexplained observations comprise basic unsolved mysteries in physics. Instead of addressing these basic questions, the doctrine teaches that these observations are essentially a sort of "no-go zone" for theoretical physicists. First, these observations are typically confined to a short Appendix A in physics books, wrongly labelled "fundamental constants" (Fig. 1). Second, "natural units" in basic equations help hide the fact that the measured values of these "constants" remains unexplained although these values are used as "input parameters". Third, accepted interrelationships or dependencies among many of these constants indicate mathematically that they contain redundant information and could not be "fundamental". Finally, binary mechanics is thus far the only comprehensive physical theory to derive the values of the so-called fundamental constants from first principles [1].
Fig. 1: The Greatest Body Of Unexplained Data In Physics
The fundamental physical constants doctrine hides the failure of popular physical theories including legacy quantum mechanics and both special and general relativity. The so-called "fundamental constants" are in fact the greatest body of unexplained data in physics. The doctrine acts to obscure the now obvious fact that these unexplained observations comprise basic unsolved mysteries in physics. Instead of addressing these basic questions, the doctrine teaches that these observations are essentially a sort of "no-go zone" for theoretical physicists. First, these observations are typically confined to a short Appendix A in physics books, wrongly labelled "fundamental constants" (Fig. 1). Second, "natural units" in basic equations help hide the fact that the measured values of these "constants" remains unexplained although these values are used as "input parameters". Third, accepted interrelationships or dependencies among many of these constants indicate mathematically that they contain redundant information and could not be "fundamental". Finally, binary mechanics is thus far the only comprehensive physical theory to derive the values of the so-called fundamental constants from first principles [1].
Monday, June 29, 2020
Motion Law: Gravitation Edition
Abstract and Introduction
As a consequence of binary mechanics (BM) fundamentals [1], a motion law states that objects tend to move in the direction of higher vacuum energy density [2]. As background, topics discussed include particles as compositions of multiple quanta, the mechanism of particle movement as a flux of individual quanta [3], the most likely motion direction and the equivalence of the gravitational field within a solid object and a quanta density gradient in its perfect vacuum component [4]. Predictions from this model have been confirmed by experimental results of Alex L Dmitriev et al, reporting weight decease with a (1) heated brass rod, (2) heating a piezo ceramic pile, (3) laser injection in optical fibers and (4) in gyros proportional to spin frequency and with horizontal more than vertical spin axis. The role of temperature in gravity-like effects has now been studied in two broad categories: distant objects not in direct contact and the special case of a weighed object resting on a scale.
Fig. 1: Motion Law At Single Particle Level

As a consequence of binary mechanics (BM) fundamentals [1], a motion law states that objects tend to move in the direction of higher vacuum energy density [2]. As background, topics discussed include particles as compositions of multiple quanta, the mechanism of particle movement as a flux of individual quanta [3], the most likely motion direction and the equivalence of the gravitational field within a solid object and a quanta density gradient in its perfect vacuum component [4]. Predictions from this model have been confirmed by experimental results of Alex L Dmitriev et al, reporting weight decease with a (1) heated brass rod, (2) heating a piezo ceramic pile, (3) laser injection in optical fibers and (4) in gyros proportional to spin frequency and with horizontal more than vertical spin axis. The role of temperature in gravity-like effects has now been studied in two broad categories: distant objects not in direct contact and the special case of a weighed object resting on a scale.

Monday, February 24, 2020
Light Speed Derivation
Abstract
Physics literature presents equations in which a measured physical constant is expressed as one or more other measured physical constants. These expressions (1) show dependencies among so-called "fundamental" constants which are in fact unexplained observations and (2) are not derivations from first principles. That is, a true derivation from first principles cannot use any unexplained data as one or more "input" parameters. Adding to previous reports [1] [2], a procedure to derive light speed with unidirectional measurements is described based only on the first principles of binary mechanics including the time-development laws [3] and a physical interpretation of binary mechanical space [4].
Introduction
With first principles describing electron geometry, zero electron electric dipole moment was derived in 2011 [5] and confirmed by two different labs [6]. With the discovery of the proton (hadron) bit cycle in 2011 [7], the non-spherical proton shape was described, confirmed by proton scattering data [8].
Using the classical definition of total angular momentum, intrinsic electron spin and hence, Planck's constant, were derived in 2015 [9]. In 2018, Planck's constant and both electron and proton intrinsic spin where derived using a different method by summation of the angular momentum of each quanta motion in the electron and proton bit cycles [10]. Fractional and elementary charge derivation was based on analysis of the time-development scalar (electrostatic) bit operation [11] and paved the way to derive intrinsic electron magnetic moment based solely on first principles, the elementary charge derivation and the classical definition of magnetic dipole moment [12].
These first-ever derivations of previously unexplained constants required full quantization of energy, space and time, namely the units of measurement in physics (Fig. 1). A primary constant value for each unit of measurement could be assigned that was consistent with the full set of derivations -- mass M as energy expressed in kg, length L in meters and time T in seconds [13]. These three values may complete the list of primary constants, if fine-structure constant α in Fig. 1 can also be successfully derived from first principles [Keene, in preparation].
Physics literature presents equations in which a measured physical constant is expressed as one or more other measured physical constants. These expressions (1) show dependencies among so-called "fundamental" constants which are in fact unexplained observations and (2) are not derivations from first principles. That is, a true derivation from first principles cannot use any unexplained data as one or more "input" parameters. Adding to previous reports [1] [2], a procedure to derive light speed with unidirectional measurements is described based only on the first principles of binary mechanics including the time-development laws [3] and a physical interpretation of binary mechanical space [4].
Introduction
With first principles describing electron geometry, zero electron electric dipole moment was derived in 2011 [5] and confirmed by two different labs [6]. With the discovery of the proton (hadron) bit cycle in 2011 [7], the non-spherical proton shape was described, confirmed by proton scattering data [8].
Using the classical definition of total angular momentum, intrinsic electron spin and hence, Planck's constant, were derived in 2015 [9]. In 2018, Planck's constant and both electron and proton intrinsic spin where derived using a different method by summation of the angular momentum of each quanta motion in the electron and proton bit cycles [10]. Fractional and elementary charge derivation was based on analysis of the time-development scalar (electrostatic) bit operation [11] and paved the way to derive intrinsic electron magnetic moment based solely on first principles, the elementary charge derivation and the classical definition of magnetic dipole moment [12].
These first-ever derivations of previously unexplained constants required full quantization of energy, space and time, namely the units of measurement in physics (Fig. 1). A primary constant value for each unit of measurement could be assigned that was consistent with the full set of derivations -- mass M as energy expressed in kg, length L in meters and time T in seconds [13]. These three values may complete the list of primary constants, if fine-structure constant α in Fig. 1 can also be successfully derived from first principles [Keene, in preparation].
Monday, December 9, 2019
Vacuum Composition
Abstract and Introduction
Assertions that perfect vacuum and almost all of the volume of a single atom are "empty space" are questionable. In a replication of a previous simulation experiment [1] with additional analysis, perfect vacuum was defined as total energy density minus electron and nucleon particle density. Examining the entire range of non-zero energy quanta (1-state bit) densities, only about 12 percent or less of the quanta were associated with particles, indicating that perfect vacuum was composed of about 88 percent or more of quanta in the final state after cooling (Figs. 1 and 2). Threshold energy density for baryogenesis (nucleon formation) was 0.07 of maximum. In higher energy density initial states in the plasma and lepton-quark soup ranges, "explosive" centrifugal momentum leaves much lower particle and vacuum energy densities after cooling, which may be relevant to expanding universe questions.
Fig. 1: Vacuum Composition After Cooling to Zero Kelvin (Final Density)

Assertions that perfect vacuum and almost all of the volume of a single atom are "empty space" are questionable. In a replication of a previous simulation experiment [1] with additional analysis, perfect vacuum was defined as total energy density minus electron and nucleon particle density. Examining the entire range of non-zero energy quanta (1-state bit) densities, only about 12 percent or less of the quanta were associated with particles, indicating that perfect vacuum was composed of about 88 percent or more of quanta in the final state after cooling (Figs. 1 and 2). Threshold energy density for baryogenesis (nucleon formation) was 0.07 of maximum. In higher energy density initial states in the plasma and lepton-quark soup ranges, "explosive" centrifugal momentum leaves much lower particle and vacuum energy densities after cooling, which may be relevant to expanding universe questions.

Tuesday, May 22, 2018
Zero Kelvin Particle States
[Updated: May 27, 2018]
Abstract and Introduction
Related to the momentum concept, many L type 1-state bits may represent future particle motion [1]. Toward precise definition of leptons and quarks, elementary particle states were studied at zero Kelvin where particle motion is zero [2] thereby removing this momentum-related component. Results confirm previous reports [3] [4] where eight elementary particles [5] may be clearly distinguished by their specific states (Figs. 1 to 3). To further assess the effect of extreme cooling on system state, two conditions were compared: 1) zero Kelvin with zero particle motion and 2) a greater energy density with higher temperature and particle motion (Figs. 4 and 5). These data provide specific event detection criteria which may be incorporated in system state time-evolution and analysis software.
Fig. 1: Summary: Elementary Particle States at Zero Kelvin

Abstract and Introduction
Related to the momentum concept, many L type 1-state bits may represent future particle motion [1]. Toward precise definition of leptons and quarks, elementary particle states were studied at zero Kelvin where particle motion is zero [2] thereby removing this momentum-related component. Results confirm previous reports [3] [4] where eight elementary particles [5] may be clearly distinguished by their specific states (Figs. 1 to 3). To further assess the effect of extreme cooling on system state, two conditions were compared: 1) zero Kelvin with zero particle motion and 2) a greater energy density with higher temperature and particle motion (Figs. 4 and 5). These data provide specific event detection criteria which may be incorporated in system state time-evolution and analysis software.

Sunday, April 15, 2018
Bit Function Analysis
Abstract and Introduction
The Binary Mechanics Lab (BML) software release for Bit Function Analysis (BFA) may mark a milestone particle physics methodology advance. Particle interactions and effects of various independent variables such as electromagnetic potentials may now be viewed and assessed directly thereby reducing reliance on operational definition from distant event detector outputs, as currently used at particle accelerator sites such as CERN. This article describes use of the BFA program and some preliminary results which suggest that electron and quark particles and their energy levels may now be rigorously defined through direct observation.
Fig. 1: Particle Physics Methodology Milestone
The Binary Mechanics Lab (BML) software release for Bit Function Analysis (BFA) may mark a milestone particle physics methodology advance. Particle interactions and effects of various independent variables such as electromagnetic potentials may now be viewed and assessed directly thereby reducing reliance on operational definition from distant event detector outputs, as currently used at particle accelerator sites such as CERN. This article describes use of the BFA program and some preliminary results which suggest that electron and quark particles and their energy levels may now be rigorously defined through direct observation.
Labels:
CERN,
electron,
Fermilab,
inertia,
physics news,
plasma,
positron,
proton,
quarks,
simulation,
software,
vacuum
Tuesday, May 24, 2016
Matter Creation Sequel
Abstract and Introduction
Matter creation based on electron and proton counts was examined after a simulated volume cooled to zero degrees Kelvin as a function of initial energy density. Findings include (1) lowest matter creation occurred starting from maximum energy density (1.0) and "perfect vacuum" density (0.1), (2) greatest matter creation was produced when starting from 0.3 energy density and (3) the SUVF bit operations order produced the greatest matter creation, compared to the VSUF and SVUF orders.
Background
Studies using the boosted energies of the Large Hadron Collider at CERN may provide only a primitive, keyhole view of possible events in the entire energy density range from absolute vacuum to absolute maximum energy density. Absolute vacuum and absolute maximum energy density are consequences of quantization of space and energy in binary mechanics (BM) [1] aka "full quantum mechanics". Energy was quantized by limiting spatial objects called bit loci to 0-states or 1-states. Then, absolute vacuum could be defined as a volume with all 0-state bit loci [2]. Note that so-called "perfect vacuum" may contain up to about 10% 1-state bit loci and is therefore not "empty space" (e.g., [3]). At the other extreme, absolute maximum energy density is achieved with all bit loci in a volume in the 1-state. The BM system state, named the bit function, is the spatial distribution of 1- and 0-state bits. With space and time quantization, infinitesimal operators in "partial quantum mechanics" (QM) were not applicable mathematically. Thus, four bit operations -- unconditional (U), scalar (S), vector (V) and strong (F), were based on relativistic Dirac spinor equations [1] [4] implementing time-development of the system state. Since results depend on bit operations order, only one order can be physically correct [5].
Matter creation based on electron and proton counts was examined after a simulated volume cooled to zero degrees Kelvin as a function of initial energy density. Findings include (1) lowest matter creation occurred starting from maximum energy density (1.0) and "perfect vacuum" density (0.1), (2) greatest matter creation was produced when starting from 0.3 energy density and (3) the SUVF bit operations order produced the greatest matter creation, compared to the VSUF and SVUF orders.
Background
Studies using the boosted energies of the Large Hadron Collider at CERN may provide only a primitive, keyhole view of possible events in the entire energy density range from absolute vacuum to absolute maximum energy density. Absolute vacuum and absolute maximum energy density are consequences of quantization of space and energy in binary mechanics (BM) [1] aka "full quantum mechanics". Energy was quantized by limiting spatial objects called bit loci to 0-states or 1-states. Then, absolute vacuum could be defined as a volume with all 0-state bit loci [2]. Note that so-called "perfect vacuum" may contain up to about 10% 1-state bit loci and is therefore not "empty space" (e.g., [3]). At the other extreme, absolute maximum energy density is achieved with all bit loci in a volume in the 1-state. The BM system state, named the bit function, is the spatial distribution of 1- and 0-state bits. With space and time quantization, infinitesimal operators in "partial quantum mechanics" (QM) were not applicable mathematically. Thus, four bit operations -- unconditional (U), scalar (S), vector (V) and strong (F), were based on relativistic Dirac spinor equations [1] [4] implementing time-development of the system state. Since results depend on bit operations order, only one order can be physically correct [5].
Wednesday, May 11, 2016
Matter Creation
Abstract and Introduction
Identified matter-antimatter asymmetry mechanisms have indicated that predominance of matter over antimatter results from ongoing processes in the present [1], not from events in the distant past in the early universe. With space-time quantization in binary mechanics (BM) [2], quantum mechanics (QM) time-development operators with infinitesimal increments in position or time were no longer applicable mathematically. Hence, four bit operations -- unconditional (U), scalar (S), vector (V) and strong (F), were defined based on relativistic Dirac spinor equations. Since results depend on bit operations order [3], a major research objective is to determine the one and only physically correct bit operations order. The present research question was: which bit operation orders favor matter creation in present real-time? This study found that VSUF, SVUF and SUVF orders produce matter creation (Figs. 1 and 2) and eliminated the USVF, UVSF and VUSF orders based on this criterion.
Fig. 1: Matter Creation: Electrons

Legend: 1-state bit density: probability a bit locus is in 1-state. Exp: expected based on random distribution of 1-state bits. SUVF, SVUF, VSUF: bit operations order. Red arrows: absolute maximum temperature (maximum S + V counts).
Identified matter-antimatter asymmetry mechanisms have indicated that predominance of matter over antimatter results from ongoing processes in the present [1], not from events in the distant past in the early universe. With space-time quantization in binary mechanics (BM) [2], quantum mechanics (QM) time-development operators with infinitesimal increments in position or time were no longer applicable mathematically. Hence, four bit operations -- unconditional (U), scalar (S), vector (V) and strong (F), were defined based on relativistic Dirac spinor equations. Since results depend on bit operations order [3], a major research objective is to determine the one and only physically correct bit operations order. The present research question was: which bit operation orders favor matter creation in present real-time? This study found that VSUF, SVUF and SUVF orders produce matter creation (Figs. 1 and 2) and eliminated the USVF, UVSF and VUSF orders based on this criterion.

Legend: 1-state bit density: probability a bit locus is in 1-state. Exp: expected based on random distribution of 1-state bits. SUVF, SVUF, VSUF: bit operations order. Red arrows: absolute maximum temperature (maximum S + V counts).
Labels:
antimatter,
bit operation,
CERN,
density,
Dirac,
electron,
Fermilab,
matter,
plasma,
positron,
proton,
quarks,
simulation,
temperature,
vacuum
Tuesday, May 3, 2016
Particle Motion Representation
Abstract and Introduction
Observed properties of all so-called elementary particles arise from just four variations of a spatial object named a spot unit [1] [2] [3], among the smallest building blocks underlying physical phenomena described to date. A spot unit contains two binary bits named mite (M) and lite (L) with 0 or 1 allowed states, each located in a cubic bit locus of dimension d, a fundamental length constant [4], quantizing energy and space respectively (Fig. 1).
Fig. 1: Spot Unit

The M bits have an electric charge attribute and are the electrostatic potential field. The first-ever calculations of Planck's constant h and of electron magnetic moment from first principles [4] [5] suggests that a mass attribute of energy is associated with M or mite bits. The L or lite bits are the magnetic potential field. With space and time quantization, infinitesimal operators in quantum mechanics (QM) are not mathematically applicable. Hence, four time-development bit operations were based on relativistic Dirac spinor equations [6]. One of these, the vector bit operation, accelerates 1-state M bits to L bit loci in a quantized time tick t [7]. Modulo 2 parity of spot unit integer position coordinates determines spot unit direction (eq. 6 in [6]) and hence, motion direction for the scalar, vector and unconditional bit operations. This article presents a demonstration that 1-state L bits represent a motion attribute of energy coding length and direction of 1-state bit position change in subsequent time ticks.
Observed properties of all so-called elementary particles arise from just four variations of a spatial object named a spot unit [1] [2] [3], among the smallest building blocks underlying physical phenomena described to date. A spot unit contains two binary bits named mite (M) and lite (L) with 0 or 1 allowed states, each located in a cubic bit locus of dimension d, a fundamental length constant [4], quantizing energy and space respectively (Fig. 1).

Thursday, April 28, 2016
LIGO Gravity Wave Mechanism
Abstract and Introduction
A gravitational wave [1] observed at LIGO (Laser Interferometer Gravitational-Wave Observatory) [2] may provide experimental confirmation of two major results of binary mechanics (BM) [3]: (1) objects tend to move toward regions of higher vacuum energy density [4] [5] [6] and (2) light speed in vacuum decreases at reduced vacuum energy density [7] [8]. This paper outlines how the BM model of gravitational effects and the land-mark light speed discovery may fully account for the LIGO gravitational wave data.
Table 1: LIGO Gravitational Wave Mechanism and Detection

A gravitational wave [1] observed at LIGO (Laser Interferometer Gravitational-Wave Observatory) [2] may provide experimental confirmation of two major results of binary mechanics (BM) [3]: (1) objects tend to move toward regions of higher vacuum energy density [4] [5] [6] and (2) light speed in vacuum decreases at reduced vacuum energy density [7] [8]. This paper outlines how the BM model of gravitational effects and the land-mark light speed discovery may fully account for the LIGO gravitational wave data.

Saturday, February 27, 2016
Electron Gas Standing Waves
While testing a new batch mode version of the Binary Mechanics Lab Simulator (BMLS), remarkable standing waves of an electron gas in perfect vacuum were observed (Fig. 1).
Fig. 1: Standing Waves in Vacuum Electron Gas


Friday, January 15, 2016
Faster Than Light
Binary mechanics (BM) [1] predicts that faster-than-light motion of 1-state bits occurs over specific distances under particular conditions defined by four time-development bit operations [2] -- unconditional (U), scalar (S), vector (V) and strong (F) [3] [4].
1-State Fermion Mite Bit Velocities
Distance d = 1. Bit velocity v = d/t where d and t are the fundamental quantized length and time constants [5]. Distance d is presently thought to be approximately 0.6 fm. Time interval t was calculated based on the speculation that so-called "light speed in vacuum" c = v/π (eq. 2 in [5]), approximately 6.34922E-25 seconds in the BM frame. In one time tick t of the unconditional bit operation, all 1-state bits (fermion mites and boson lites) and 0-state bits (1-bit neutrinos) move exactly one distance unit d at bit velocity v. With four bit operations each thought to have duration t, the average unconditional bit velocity over one cycle of bit operations application is v/4. It may be convenient to express these velocities in bit velocity units where light speed is 1/π and average velocity over 4 ticks t due to the unconditional bit operation is 1/4, less than purported light speed.
Fig. 1: Faster-Than-Light 1-State Fermion Mite Bit Motion

Legend: States of spatial objects named spot units over successive ticks (top to bottom). Each spot unit contains two bit loci named mite (circles) and lite (arrows) with 0 (blue) or 1 (black) allowed states. The last row adds view of a bit locus in an adjacent perpendicular spot unit. Strong bit operation direction (purple arrow).
1-State Fermion Mite Bit Velocities
Distance d = 1. Bit velocity v = d/t where d and t are the fundamental quantized length and time constants [5]. Distance d is presently thought to be approximately 0.6 fm. Time interval t was calculated based on the speculation that so-called "light speed in vacuum" c = v/π (eq. 2 in [5]), approximately 6.34922E-25 seconds in the BM frame. In one time tick t of the unconditional bit operation, all 1-state bits (fermion mites and boson lites) and 0-state bits (1-bit neutrinos) move exactly one distance unit d at bit velocity v. With four bit operations each thought to have duration t, the average unconditional bit velocity over one cycle of bit operations application is v/4. It may be convenient to express these velocities in bit velocity units where light speed is 1/π and average velocity over 4 ticks t due to the unconditional bit operation is 1/4, less than purported light speed.

Legend: States of spatial objects named spot units over successive ticks (top to bottom). Each spot unit contains two bit loci named mite (circles) and lite (arrows) with 0 (blue) or 1 (black) allowed states. The last row adds view of a bit locus in an adjacent perpendicular spot unit. Strong bit operation direction (purple arrow).
Labels:
bit operation,
constants,
Dirac,
Einstein,
electromagnetic,
forces,
light speed,
neutrinos,
neutron,
photon,
physics news,
potential,
predictions,
proton,
quantum mechanics,
Special Relativity,
Standard Model,
vacuum
Tuesday, January 12, 2016
Light Speed at Zero Kelvin
Abstract and Introduction
Light velocity at zero degrees Kelvin was examined. Major results of previous reports were replicated [1] [2]. First, light speed was zero at low vacuum energy (1-state bit) densities. That is, the hypothesis that the lowest vacuum densities are opaque to light transmission [3] was confirmed with improved measurement methods. Second, light speed decreased from its maximum velocity as energy density decreased. Third, light velocity was approximately equal to 1/π in bit velocity units [4], where bit velocity is d/t and d and t are the quantized fundamental length and time constants respectively. These results (1) change the status of Einstein's Special Relativity statement of constant light speed c in a vacuum independent of signal source velocity from postulate to known mechanism and (2) limit the vacuum density range in which light speed c may, in fact, be constant [1] and (3) highlight issues in light speed measurement methods.
Methods and Results
Fig. 1: Light Speed at Zero Kelvin vs Energy Density

Legend: Bit density: energy (1-state bit) density as proportion of maximum possible energy density. Light speed expressed in bit velocity units.
Light velocity at zero degrees Kelvin was examined. Major results of previous reports were replicated [1] [2]. First, light speed was zero at low vacuum energy (1-state bit) densities. That is, the hypothesis that the lowest vacuum densities are opaque to light transmission [3] was confirmed with improved measurement methods. Second, light speed decreased from its maximum velocity as energy density decreased. Third, light velocity was approximately equal to 1/π in bit velocity units [4], where bit velocity is d/t and d and t are the quantized fundamental length and time constants respectively. These results (1) change the status of Einstein's Special Relativity statement of constant light speed c in a vacuum independent of signal source velocity from postulate to known mechanism and (2) limit the vacuum density range in which light speed c may, in fact, be constant [1] and (3) highlight issues in light speed measurement methods.
Methods and Results

Legend: Bit density: energy (1-state bit) density as proportion of maximum possible energy density. Light speed expressed in bit velocity units.
Monday, December 14, 2015
Binary Mechanics Lab Simulator Update
The Binary Mechanics Lab Simulator (BMLS) software has been updated. Fig. 1 shows a screen shot of a "laser" experiment. Basic information has been presented previously [1], and might best be consulted first. In addition, further evidence is presented that light velocity c equals bit velocity v / π.
Fig. 1: BMLS Screen Shot

Labels:
bit operation,
constants,
cycle,
density,
electromagnetic,
electron,
kinetic energy,
laser,
light speed,
matter,
neutron,
photon,
positron,
proton,
simulation,
software,
spot unit,
Standard Model,
temperature,
vacuum
Tuesday, April 21, 2015
Elementary Particle Energies
[Updated: March 10, 2019]
Abstract and Introduction
The eight elementary particles consist of four matter particles -- electron (e-L) and three R-handed d quarks (dR, red, green, blue), and four antimatter particles -- positron (e+R) and three L-handed d quarks (dL, red, green, blue) [1] [2]. With quantization of space, time and energy in binary mechanics (BM) [1], each of these eight particles is associated with a spatial object called a spot which may contain zero to six 1-state bits of quantized energy [3]. If a simulation randomly seeds these spots with 1-state energy bits, each particle type would represent about one eighth (0.125) of the total energy. This exploratory, descriptive study reports the discovery that application of the four fundamental time-evolution bit operations [4] causes redistribution of energy among the particle types which then exhibit markedly different energy densities. In addition, the distribution of energy among lepton and quark particle types by these time-development laws varies as a function of overall bit density in a physical system (Fig. 1).
Fig. 1: Elementary Particle Energies vs Bit Density

Legend: Matter: electrons (e-L, dark blue) and three R d quarks (dR, yellow). Anti-matter: positrons (e+R, pink) and three L d quarks (dL, light blue). Distribution of elementary particle energy (vertical) changes as a function of overall bit density (horizontal). SVUF (left) and VSUF (right) bit operations order.
Abstract and Introduction
The eight elementary particles consist of four matter particles -- electron (e-L) and three R-handed d quarks (dR, red, green, blue), and four antimatter particles -- positron (e+R) and three L-handed d quarks (dL, red, green, blue) [1] [2]. With quantization of space, time and energy in binary mechanics (BM) [1], each of these eight particles is associated with a spatial object called a spot which may contain zero to six 1-state bits of quantized energy [3]. If a simulation randomly seeds these spots with 1-state energy bits, each particle type would represent about one eighth (0.125) of the total energy. This exploratory, descriptive study reports the discovery that application of the four fundamental time-evolution bit operations [4] causes redistribution of energy among the particle types which then exhibit markedly different energy densities. In addition, the distribution of energy among lepton and quark particle types by these time-development laws varies as a function of overall bit density in a physical system (Fig. 1).

Legend: Matter: electrons (e-L, dark blue) and three R d quarks (dR, yellow). Anti-matter: positrons (e+R, pink) and three L d quarks (dL, light blue). Distribution of elementary particle energy (vertical) changes as a function of overall bit density (horizontal). SVUF (left) and VSUF (right) bit operations order.
Labels:
antimatter,
bit operation,
CERN,
cycle,
density,
electron,
forces,
LHC,
matter,
nuclear physics,
plasma,
positron,
proton,
quarks,
simulation,
software,
spot cube,
spot unit,
Standard Model,
vacuum
Friday, April 17, 2015
Expanding Universe Questions
The discovery that light speed in vacuum c is not constant over the entire vacuum energy range may raise significant questions about expanding universe concepts. A recent study reported evidence that light speed c begins to decrease at lower vacuum energy densities and that volumes at zero vacuum energy density, named absolute vacuum, were in fact completely opaque to electromagnetic (EM) wave transmission (Fig. 1 from [1]).
Fig. 1: Light Speed vs Media Density and Bit Operations Order

These findings raise the possibility that observed redshifts may not be due to an expanding universe, but rather to regions of lower vacuum density where light speed is decreased producing the exact same observed redshifts. This possiblity may raise serious questions about the veracity of the expanding universe theory in astrophysics. Indeed, the question of whether the universe is expanding, contracting or neither may be back on the table again.

Friday, March 20, 2015
If You Want to Keep Your Higgs Boson...
This note reports additional information regarding "If you like your Higgs boson, you can keep your Higgs boson" and other lost causes in the Standard Model (SM). With the quantization of space, time and energy in binary mechanics (BM) [1], infinitesimal time-development operators in conventional quantum mechanics (QM) were no longer mathematically applicable since only integer increments in spatial position and time were allowed. Thus, four binary bit operations were defined -- unconditional (U), scalar (S), vector (V) and strong (F), each occurring in a time tick t in a time-development cycle of duration T (4t). The unconditional bit operation corresponds to the momentum operator, leaving three fundamental forces defined by the scalar (electrostatic), vector (magnetic) and strong bit operations [2]. Only one bit operations order can be fully correct physics since each may affect the results obtained by others [3].
"...You can keep your Higgs boson." Fig. 1 shows force incidence as a function of bit density in a simulated 64x64x64 spot volume.
Fig. 1: Force Bit Operations Counts vs Bit Density

Legend: Counts for scalar (blue), vector (purple) and strong (yellow) bit operations from absolute vacuum (0 bit density) [4] to maximum bit density (1) for six permutations of bit operations order.
"...You can keep your Higgs boson." Fig. 1 shows force incidence as a function of bit density in a simulated 64x64x64 spot volume.

Legend: Counts for scalar (blue), vector (purple) and strong (yellow) bit operations from absolute vacuum (0 bit density) [4] to maximum bit density (1) for six permutations of bit operations order.
Labels:
baryon,
bit operation,
CERN,
cycle,
density,
Einstein,
electromagnetic,
electron,
forces,
gravity,
Higgs boson,
inertia,
light speed,
proton,
quantum mechanics,
quarks,
simulation,
software,
Standard Model,
vacuum
Sunday, March 15, 2015
Light Speed Amendment
Updated: April 17, 2015
Abstract and Introduction
In this pilot study, the hypothesis that absolute vacuum, defined as zero bit (energy) density [1], is opaque to electromagnetic (EM, light) transmission posed in 2011 [2] was confirmed using simulated volumes with bit densities ranging from zero to 0.30 expressed as proportion of maximum possible density. At zero bit density, light speed c was zero. The first detectable light transmission was seen at 0.10 bit density. Light speed c increased with increased bit densities through partial vacuum levels. An essentially constant light velocity c was obtained only at higher bit densities at and above approximately 0.15, thereby limiting the energy density range over which light speed invariance postulated in Special Relativity occurs. Thus, the Special Relativity postulate of "light speed invariance in a vacuum" was correct only for higher vacuum (bit) density ranges. The postulates of binary mechanics (BM) [3] generated the present hypothesis and explain the underlying mechanisms for the reported results.
Methods and Results
Fig. 1: Delay in Arrival of Wave Front with Two Bit Operations Orders.

Abstract and Introduction
In this pilot study, the hypothesis that absolute vacuum, defined as zero bit (energy) density [1], is opaque to electromagnetic (EM, light) transmission posed in 2011 [2] was confirmed using simulated volumes with bit densities ranging from zero to 0.30 expressed as proportion of maximum possible density. At zero bit density, light speed c was zero. The first detectable light transmission was seen at 0.10 bit density. Light speed c increased with increased bit densities through partial vacuum levels. An essentially constant light velocity c was obtained only at higher bit densities at and above approximately 0.15, thereby limiting the energy density range over which light speed invariance postulated in Special Relativity occurs. Thus, the Special Relativity postulate of "light speed invariance in a vacuum" was correct only for higher vacuum (bit) density ranges. The postulates of binary mechanics (BM) [3] generated the present hypothesis and explain the underlying mechanisms for the reported results.
Methods and Results

Labels:
bit operation,
constants,
dark matter,
density,
Einstein,
electromagnetic,
gravity,
light speed,
predictions,
quantum mechanics,
quarks,
simulation,
software,
Special Relativity,
vacuum,
wavelength
Wednesday, September 21, 2011
Physics News: Electron Shape
Physics News will be a new feature of this informal journal of binary mechanics (BM) [1] highlighting research supporting predictions of the theory. This installment considers the BM prediction that the electric dipole moment (EDM) of the electron is exactly zero. A recent report by Hudson et. al. in Nature on "Improved measurement of the shape of the electron" [2] states: "This result, consistent with zero, indicates that the electron is spherical at this improved level of precision." In an email exchange with one of the six co-authors of this paper, I wrote:
In binary mechanics (e.g., "Physical interpretation of binary mechanical space" ... [3]), which postulates an internal structure for the electron, the constituent bits (called mites) "spin" in a plane orthogonal to the spin axis, where each of three possible equally-spaced mite bit loci is equidistant from the particle's center of mass and symmetrically located around the spin axis.
sciencedaily.com reporting on your Nature letter states (AFAIK, their words, not yours): "If the electrons were not perfectly round then, like an unbalanced spinning-top, their motion would exhibit a distinctive wobble, distorting the overall shape of the molecule. The researchers saw no sign of such a wobble."
Saturday, September 17, 2011
A Law of Motion
Several consequences of the postulates of binary mechanics (BM) [1] may be summarized in a basic physics law of motion, namely that objects tend to move in the direction of higher bit density. Fig. 1 illustrates this idea for one spatial dimension.
Fig. 1: A Law of Motion

This working hypothesis of a fundamental law of motion in physics is applicable for objects ranging from elementary particles to astronomical objects such as planets and entire galaxies. This note reviews some results and logic supporting this hypothesis.

This working hypothesis of a fundamental law of motion in physics is applicable for objects ranging from elementary particles to astronomical objects such as planets and entire galaxies. This note reviews some results and logic supporting this hypothesis.
Subscribe to:
Posts (Atom)