Abstract and Introduction
Assertions that perfect vacuum and almost all of the volume of a single atom are "empty space" are questionable. In a replication of a previous simulation experiment [1] with additional analysis, perfect vacuum was defined as total energy density minus electron and nucleon particle density. Examining the entire range of non-zero energy quanta (1-state bit) densities, only about 12 percent or less of the quanta were associated with particles, indicating that perfect vacuum was composed of about 88 percent or more of quanta in the final state after cooling (Figs. 1 and 2). Threshold energy density for baryogenesis (nucleon formation) was 0.07 of maximum. In higher energy density initial states in the plasma and lepton-quark soup ranges, "explosive" centrifugal momentum leaves much lower particle and vacuum energy densities after cooling, which may be relevant to expanding universe questions.
Fig. 1: Vacuum Composition After Cooling to Zero Kelvin (Final Density)

Updated: April 17, 2015
Abstract and Introduction
In this pilot study, the hypothesis that absolute vacuum, defined as zero bit (energy) density [1], is opaque to electromagnetic (EM, light) transmission posed in 2011 [2] was confirmed using simulated volumes with bit densities ranging from zero to 0.30 expressed as proportion of maximum possible density. At zero bit density, light speed c was zero. The first detectable light transmission was seen at 0.10 bit density. Light speed c increased with increased bit densities through partial vacuum levels. An essentially constant light velocity c was obtained only at higher bit densities at and above approximately 0.15, thereby limiting the energy density range over which light speed invariance postulated in Special Relativity occurs. Thus, the Special Relativity postulate of "light speed invariance in a vacuum" was correct only for higher vacuum (bit) density ranges. The postulates of binary mechanics (BM) [3] generated the present hypothesis and explain the underlying mechanisms for the reported results.
Methods and Results
Fig. 1: Delay in Arrival of Wave Front with Two Bit Operations Orders.

Updated: June 26, 2011
Binary mechanics (BM) [1] is a theory of everything based on simple postulates in which the universe is implemented with a single fundamental object called the spot unit consisting of two binary bits. Based on position parities in BM space (Table 1 in [1]), these two bits determine, among other things, electric and color charges for leptons and quarks (the mite bit) and direction of bit motion (the lite bit) according to four fundamental bit operations which define exact time-development of BM states (1-state bit distributions).
An interesting Wikipedia article titled "List of Unsolved Problems in Physics" [2] provides an opportunity to take stock of the development of the theory of BM to date. Hence, this article will follow the general outline of the Wikipedia article with several objectives -- (1) provide hopefully helpful commentary for students of BM, (2) suggest where unsolved problems may be successfully addressed by the theory of BM and its software simulation technology [3], and (3) tabulate as solved those items where BM may have already adequately addressed, in whole or part, particular unsolved problems.
[Updated Oct 6, 2014]
Binary mechanics (BM) [1] provides a rather simple explanation of dark matter and energy. Let us focus on two components of the definition of dark matter in astrophysics, namely matter which (1) has gravitational effects and (2) does not emit electromagnetic (EM) radiation, which suggests the "dark" descriptor for this matter.
The electron spot may serve to present the underlying mechanisms of dark matter.
Fig. 1: Electron Spot XYZ Parity = 111
The theory of binary mechanics (BM) [1] quantizes space and time. As a result, many familiar physics principles and phenomena are explained at a new level of detail and redefined to some extent. Hence, a physics glossary may be a useful guide.
As a physical theory, or more specifically a theory of everything or grand unification, BM has no known competition by the key criterion of simplicity or parsimony [2]. The universe is proposed to consist of a single fundamental object called the spot unit which consists of two binary bits -- mite and lite. The spot unit must contain mechanisms including to set its bit states to one or zero according to the fundamental bit operations of BM and to attach to other spot units to form spots (3 spot units) and spot cubes (8 spots), which in turn form a cubic spatial lattice [3].
Binary mechanics (BM) [1] depreciates gravity from a primary force with the working hypothesis that observed gravity effects are the result of the four fundamental bit operations -- unconditional, scalar, vector and strong. This article presents observations supporting this hypothesis.
It was found that acceleration of two bodies toward each other depended on a higher bit density between the two bodies than in other directions around the bodies. Further, attraction of two bodies conventionally described as gravity required a minimum bit density in the space between the bodies.
Discussion of these results suggests that space-time curvature, such as postulated in the General Theory of Relativity by Einstein is not required to explain gravity or other related observations, and indeed, probably does not even exist in the absence of data requiring it.
Updated: April 22, 2011
An absolute vacuum in binary mechanics (BM) [1] is a volume with all bits in the zero state, whereas the conventionally defined perfect vacuum only requires the absence of particles such as ions or atoms. A recent report simulated the 84 tick central baryon bit cycle by introducing a single bit in the one state in an absolute vacuum [2]. Thus, the existence of elementary particles thought to consist of two or more bits in each of one or more spots [3] (e.g., the one-spot electron [4]) in an otherwise near absolute vacuum is consistent with the basic laws of BM.
The present study added bits to the vacuum in perturbation steps. Results suggest key thresholds for physical processes, such as absorption, emission, lepton formation and baryon formation. A step toward calibration of BM absolute maximum temperature in degrees Kelvin is discussed.
As implications of the assumptions or postulates of binary mechanics (BM)[1] are explored [2] [3] [4], priority tasks include determination of fundamental constants such as the BM distance unit d in meters and time (tick) unit t in seconds, derivation of other fundamental values such as the proton-electron rest mass ratio and generally, experimental verification that BM postulates and bit operations are both consistent with well-known physical observations (e.g., extremely long life-time of protons and electrons) and indeed provide very low level explanations of these phenomena. This article discusses some issues which may be relevant to successful completion of these goals including a number of BM predictions which may make or break BM as a physical theory.
Updated Jan 26, 2016
Computer simulation of the time development of states (bit patterns) in binary mechanics (BM) [1] requires a physical interpretation of its quantized space. As shown in Fig. 1, let us view a spot unit as two cubes with side length d, a BM fundamental constant, one each for the fermion mite bit (M, circle) and the boson lite bit (L, arrow).
Fig. 1: 2-Bit Spot Unit
