Pages

Showing posts with label CERN. Show all posts
Showing posts with label CERN. Show all posts

Friday, February 8, 2019

Zero Kelvin Particle Composition

[Updated: Nov 26, 2020]
Abstract and Introduction
Binary mechanics (BM) predicts the exact composition of protons and neutrons with maximum energy content but zero motion at zero degrees Kelvin. In this configuration, sequential loci in the proton and electron bit cycles are filled with alternating 0- and 1-state bits (Figs. 2 and 4) because zero motion requires absence of adjacent energy quanta pairs in the cycle sequence. Bit function analysis of particle composition after cooling to zero Kelvin completely confirms this hypothesis (Fig. 3). Results further illustrate how bit function analysis methodology may continue to support the leading position of Binary Mechanics Lab (BML) in advanced particle physics research.

Fig. 1: Spot Unit, Spot and Spot Cube

Monday, December 24, 2018

Memes For Physicists II

Memes continue to appear on bulletin boards at Binary Mechanics Lab (BML).

Fig. 1: General Relativity Excluded; Binary Mechanics Included

Sunday, June 10, 2018

Elementary Charge Derivation

[Updated: Feb 3, 2019]
Abstract and Introduction
Breaking news: elementary charge e has been calculated for the first time from first principles of the leading comprehensive, fundamental quantum theory known as binary mechanics (BM) [1]. A quantized Coulomb force was defined (eq. 1). Based only on the time-development scalar bit operation [2] [3] and the three quantized units of measurement -- M, L and T (Fig. 1) [4], calculated electrostatic force (eq. 2) accounted for 97.6% of the quantized Coulomb force. Elementary charge e may be derived from three primary physics constants based on energy-space-time quantization (eqs. 3 and 4).

Fig. 1: Secondary Physics Constants Derived From Primary Constants

Sunday, April 15, 2018

Bit Function Analysis

Abstract and Introduction
The Binary Mechanics Lab (BML) software release for Bit Function Analysis (BFA) may mark a milestone particle physics methodology advance. Particle interactions and effects of various independent variables such as electromagnetic potentials may now be viewed and assessed directly thereby reducing reliance on operational definition from distant event detector outputs, as currently used at particle accelerator sites such as CERN. This article describes use of the BFA program and some preliminary results which suggest that electron and quark particles and their energy levels may now be rigorously defined through direct observation.

Fig. 1: Particle Physics Methodology Milestone

Tuesday, April 10, 2018

Hurricane Hits Physics

Abstract and Introduction
On Sept. 18, 2017, Cat 5 hurricane Maria destroyed Binary Mechanics Lab (BML), located in the Commonwealth of Dominica in the Caribbean West Indies windward islands. just as BML was emerging as the leading fundamental physics lab in the world (see e.g. [1] [2] [3]). For over six months, BML had no utility-supplied electric power and internet. At present, BML has been largely rebuilt. This article reviews upcoming BML activities, including research publications and software.

Fig. 1: Getting Started: Bit Function Analysis

Tuesday, May 24, 2016

Matter Creation Sequel

Abstract and Introduction
Matter creation based on electron and proton counts was examined after a simulated volume cooled to zero degrees Kelvin as a function of initial energy density. Findings include (1) lowest matter creation occurred starting from maximum energy density (1.0) and "perfect vacuum" density (0.1), (2) greatest matter creation was produced when starting from 0.3 energy density and (3) the SUVF bit operations order produced the greatest matter creation, compared to the VSUF and SVUF orders.

Background
Studies using the boosted energies of the Large Hadron Collider at CERN may provide only a primitive, keyhole view of possible events in the entire energy density range from absolute vacuum to absolute maximum energy density. Absolute vacuum and absolute maximum energy density are consequences of quantization of space and energy in binary mechanics (BM) [1] aka "full quantum mechanics". Energy was quantized by limiting spatial objects called bit loci to 0-states or 1-states. Then, absolute vacuum could be defined as a volume with all 0-state bit loci [2]. Note that so-called "perfect vacuum" may contain up to about 10% 1-state bit loci and is therefore not "empty space" (e.g., [3]). At the other extreme, absolute maximum energy density is achieved with all bit loci in a volume in the 1-state. The BM system state, named the bit function, is the spatial distribution of 1- and 0-state bits. With space and time quantization, infinitesimal operators in "partial quantum mechanics" (QM) were not applicable mathematically. Thus, four bit operations -- unconditional (U), scalar (S), vector (V) and strong (F), were based on relativistic Dirac spinor equations [1] [4] implementing time-development of the system state. Since results depend on bit operations order, only one order can be physically correct [5].

Wednesday, May 11, 2016

Matter Creation

Abstract and Introduction
Identified matter-antimatter asymmetry mechanisms have indicated that predominance of matter over antimatter results from ongoing processes in the present [1], not from events in the distant past in the early universe. With space-time quantization in binary mechanics (BM) [2], quantum mechanics (QM) time-development operators with infinitesimal increments in position or time were no longer applicable mathematically. Hence, four bit operations -- unconditional (U), scalar (S), vector (V) and strong (F), were defined based on relativistic Dirac spinor equations. Since results depend on bit operations order [3], a major research objective is to determine the one and only physically correct bit operations order. The present research question was: which bit operation orders favor matter creation in present real-time? This study found that VSUF, SVUF and SUVF orders produce matter creation (Figs. 1 and 2) and eliminated the USVF, UVSF and VUSF orders based on this criterion.

Fig. 1: Matter Creation: Electrons

Legend: 1-state bit density: probability a bit locus is in 1-state. Exp: expected based on random distribution of 1-state bits. SUVF, SVUF, VSUF: bit operations order. Red arrows: absolute maximum temperature (maximum S + V counts).

Saturday, May 7, 2016

Quantization Asymmetry

Quantization asymmetry has been defined as physical theories at the atomic and nuclear levels that quantize almost everything except space and time [1]. The continuous space-time assumption in classical and Standard Model (SM) physics and in General Relativity (GR) presently has no known justification other than tradition and superstition. Binary mechanics (BM) [2] may be seen as an instance of quantization asymmetry breaking, so to speak, since it implements quantization symmetry. In 2010, publication of the postulates of BM and some of their consequences began a transition in physics from quantization asymmetry to symmetry. This article outlines some major headlines in this developing story that has impact in virtually all sub-specialities in physics.

Fig. 1: What Death of a Theory Looks Like

Sunday, January 31, 2016

Meson and Baryon Composition

From first principles of binary mechanics (BM) [1], eight and only eight fundamental or elementary particles were derived, each occupying a spatial object named a spot in a spot cube defined from a projection of spinor components of a pair of relativistic Dirac equations of opposite handedness to the eight vertexes of a cube quantizing space [2]. Each vertex or spot was postulated to consist of three perpendicular spot units defined from the two real components of the quantum mechanics (QM) complex wave function, further restricted to 0 or 1 allowed values, quantizing energy. Properties of the eight fundamental particles were then derived from the modulo 2 parities of the integer {x, y, z} spot coordinates in the spatial lattice, including charge, color, matter vs antimatter status, unconditional bit motion direction, handedness (left or right helicity), etc (Table 1 in [1],). These properties were used to show how most Standard Model (SM) lepton and quark particles may be compositions of the eight BM elementary particles [3]. This article adds information on some mesons and baryons, further illustrating their composition from BM particles and how the "three generations of matter" arise naturally from this analysis.

Table 1: Generation 1: Some TWO-d Mesons

Legend: Generation by number of d quarks (TWO-d). r, red; g, green; b, blue. /, antiparticle. X*, spot units in neighboring spot cubes.

Tuesday, April 21, 2015

Elementary Particle Energies

[Updated: March 10, 2019]
Abstract and Introduction
The eight elementary particles consist of four matter particles -- electron (e-L) and three R-handed d quarks (dR, red, green, blue), and four antimatter particles -- positron (e+R) and three L-handed d quarks (dL, red, green, blue) [1] [2]. With quantization of space, time and energy in binary mechanics (BM) [1], each of these eight particles is associated with a spatial object called a spot which may contain zero to six 1-state bits of quantized energy [3]. If a simulation randomly seeds these spots with 1-state energy bits, each particle type would represent about one eighth (0.125) of the total energy. This exploratory, descriptive study reports the discovery that application of the four fundamental time-evolution bit operations [4] causes redistribution of energy among the particle types which then exhibit markedly different energy densities. In addition, the distribution of energy among lepton and quark particle types by these time-development laws varies as a function of overall bit density in a physical system (Fig. 1).

Fig. 1: Elementary Particle Energies vs Bit Density

Legend: Matter: electrons (e-L, dark blue) and three R d quarks (dR, yellow). Anti-matter: positrons (e+R, pink) and three L d quarks (dL, light blue). Distribution of elementary particle energy (vertical) changes as a function of overall bit density (horizontal). SVUF (left) and VSUF (right) bit operations order.

Saturday, April 11, 2015

Proton And Electron Bit Cycles

Analysis of the proton [1] [2] and electron [3] bit cycles (Fig. 1) has revealed that the bit positions in these two cycles account for all possible bit positions according to the postulates of binary mechanics (BM) [4] and a physical interpretation of BM space [3]. Hence, in addition to the four fundamental bit operations which determine exact time-development of system states, a new constraint on BM as a physical theory is that physical mechanisms for observed phenomena may typically involve one or both of these cycles. In tests of this new constraint, bit motion within and between no more than two different bit cycles -- proton and electron -- would hypothetically account for all observable physical events.

Fig. 1: Proton and Electron Bit Cycles

Legend: Six 1-state bit positions in electron cycle (yellow). 42 1-state bit positions in proton cycle. Matter d quarks (dark red, green, blue); anti-matter d quarks (light red, green, blue). Positron positions (grey). Arrows (purple) indicate bit motion direction and results of the strong bit operation [5]. The unconditional bit operation (black) accounts for all motion between color-coded spot types. XYZ positions shown without commas: e.g., 013 is {0,1,3}.

Friday, March 20, 2015

If You Want to Keep Your Higgs Boson...

This note reports additional information regarding "If you like your Higgs boson, you can keep your Higgs boson" and other lost causes in the Standard Model (SM). With the quantization of space, time and energy in binary mechanics (BM) [1], infinitesimal time-development operators in conventional quantum mechanics (QM) were no longer mathematically applicable since only integer increments in spatial position and time were allowed. Thus, four binary bit operations were defined -- unconditional (U), scalar (S), vector (V) and strong (F), each occurring in a time tick t in a time-development cycle of duration T (4t). The unconditional bit operation corresponds to the momentum operator, leaving three fundamental forces defined by the scalar (electrostatic), vector (magnetic) and strong bit operations [2]. Only one bit operations order can be fully correct physics since each may affect the results obtained by others [3].

"...You can keep your Higgs boson." Fig. 1 shows force incidence as a function of bit density in a simulated 64x64x64 spot volume.

Fig. 1: Force Bit Operations Counts vs Bit Density

Legend: Counts for scalar (blue), vector (purple) and strong (yellow) bit operations from absolute vacuum (0 bit density) [4] to maximum bit density (1) for six permutations of bit operations order.

Friday, March 6, 2015

Higgs Boson Buries Standard Model?

Abstract and Introduction
Contrary to common belief, work on the Higgs field and boson [1] may be a significant nail in the coffin for the Standard Model (SM) in physics. The scalar Higgs field may in fact describe adjacent pairs of spot units which implement the strong bit operation ("strong force") in binary mechanics (BM) [2]. With the discovery of the central baryon bit cycle [3], this binary definition of the strong force is the basis for quark confinement. Observed particle motion requires 1-state bit emission from one baryon cycle with subsequent absorption by another cycle. The Higgs boson may represent one or more instances of strong force scattering which confines 1-state bits in cycles and thereby prevents particle motion. Recall that particle mass, as the force/acceleration ratio, describes the inverse of the likelihood of such particle motion. The so-called Higgs mechanism is said to confer mass on fermion particles, a concept apparently equivalent to confinement of 1-state bits in cycles. This speculative article steps through this process and discusses some consequences, namely diminished SM and enhanced BM credibility.

Saturday, January 31, 2015

Intrinsic Electron Spin and Fundamental Constants

[Updated: Apr 12, 2018]
For the first time, the empirically measured value of Planck's constant h is calculated from first principles of a physical theory to the full precision allowed by CODATA values. Using the postulates of binary mechanics (BM) where both space and time are quantized [1], this report describes the key steps in this calculation and proposes values for the fundamental length d and time t constants.
(1) Bit velocity v was defined as greater than the speed of light in a vacuum c consistent with the BM constraint that v > c [2].
(2) A physical interpretation of BM space [3] suggested a proposed value for the fundamental BM length constant d as approximately 0.67 fm.
(3) d/v = t' = approximately 7.14E-25 s, the fundamental time constant in BM space-time.
(4) The fine structure constant α maps this quantized time unit t' from BM space to observational space with t = αt' = approximately 5.2124E-27 s.
(5) Intrinsic electron spin and hence the Planck constant h was calculated using only electron rest mass me and the proposed length d and time t constants.
(6) In addition to steps (3) and (4) above, another method was used to calculate quantized time t based only on me, h and quantized length d.
(7) Finally, eq. 9 calculates Planck constant h directly from the independently determined length constant d (step 2 above) and familiar physical constants.

Sunday, September 25, 2011

Physics News: Faster Than Light

The physics world has been aroused from a long intellectual slumber by the report from CERN investigators that some muon neutrinos may travel faster than the speed of light [1], possibly violating an essential premise of Einstein's Special Theory of Relativity. Confirmation and hopefully replication of this result would lend support for the long-standing prediction of binary mechanics (BM) [2] that absolute maximum velocity at the single bit level is substantially greater than the observed speed of light (e.g., [3] [4] [5]). Consequences of this BM prediction might result in a number of situations in which apparent faster-than-light motion could be observable.

Wednesday, March 30, 2011

Vacuum Thresholds

Updated: April 22, 2011
An absolute vacuum in binary mechanics (BM) [1] is a volume with all bits in the zero state, whereas the conventionally defined perfect vacuum only requires the absence of particles such as ions or atoms. A recent report simulated the 84 tick central baryon bit cycle by introducing a single bit in the one state in an absolute vacuum [2]. Thus, the existence of elementary particles thought to consist of two or more bits in each of one or more spots [3] (e.g., the one-spot electron [4]) in an otherwise near absolute vacuum is consistent with the basic laws of BM.

The present study added bits to the vacuum in perturbation steps. Results suggest key thresholds for physical processes, such as absorption, emission, lepton formation and baryon formation. A step toward calibration of BM absolute maximum temperature in degrees Kelvin is discussed.

Thursday, March 17, 2011

Maximum Temperature Below Half Maximum Bit Density

Updated: April 19, 2011
Binary mechanics (BM) [1] has predicted [2] that increased temperature is correlated with BM bit density over a wide range and a definite physical limitation on how high temperature could rise. In short, maximum possible temperature was predicted. A further speculation was that maximum possible temperature is attained below maximum bit density at which one might imagine that particle motion is less than the maximum possible, per considerations similar to those applicable in classical statistical mechanics. The present pilot study confirms these predictions based on data obtained with BM simulation software [3].