Pages

Saturday, March 22, 2025

How to Derive the Primary and Secondary Physical Constants

Abstract
A frequently asked question is, "How did binary mechanics (BM) derive the primary and secondary physical constants?" A true derivation of a "fundamental constant" value is based on first principles alone, without any use of other fundamental constants, which are really unexplained measurements (Fig. 1). First, measured values of the so-called fundamental constants were reverse engineered to obtain values for the BM primary constants based on full quantization of energy, space and time, expressed in kg, meters and seconds respectively, which map directly to the SI units of measurement used in science. Second, the primary constant values were used to derive the measured values of the previously unexplained secondary or "fundamental" constants.

Fig. 1: Physical Constant Derivation Highlights

Wednesday, March 12, 2025

Binary Mechanics Equations

Let's try to understand more about binary mechanics (BM) by looking at its equations [1]. Fig. 1 shows the only mathematics needed are three binary logic ideas. A three year old child already knows them because these three math ideas are built into understanding and speaking language. The first of these three ideas is the one digit binary number, zero or one, yes or no, full or empty. Second is AND logic. Its truth table determines if "Jack and Jill went up the hill" is true. If Jack went up the hill is true and Jill went up the hill is true, then the AND function ouput is one, namely that both Jack and Jill went up the hill. Any other combination is not true. The third idea is NOT logic. If we have a zero, we make it a one; if we have a one input, we make it a zero out. So you don't need math based on continuous Space-Time Theory using real numbers for every point in space and time popular in the failed Standard Model math formulations [2] which at best can only approximate physical events [3] and which look terrible (Fig. 1, lower).

Fig. 1: Three Math Ideas Can Build Fully Functional Universe

Sunday, March 9, 2025

Law of Motion Based on Mechanism of Motion

Abstract
The three-quanta threshold for particle formation [1] and the mechanism of particle motion [2] are reviewed showing how these discoveries provided a basis for a new law of motion in physics [3].

Road to the Law of Motion
In 1994, the "Binary Mechanics" paper presented full quantization of energy, space and time, with equations for system state and its time development, without input from, or use of, any "unexplained measurements", wrongly known as "fundamental constants". "Binary Mechanics" (BM) was published in JBinMech in 2010 [4].
Fig. 1: Electron Cycle

Saturday, March 8, 2025

Proton Cycle Network: Foundational Principle in Nuclear Physics

Abstract and Introduction
How do positively charged protons aggregate in the small volume of an atomic nucleus in apparent contradiction of Coulomb's law that like charges repel? Neutrons in atomic nuclei may increase average distance between protons and partly explain this proton aggregation. Present popular wisdom is that a nuclear force binds protons in atomic nuclei. However, "nuclear force" may be little more than a label for the phenomenon rather than an explanation of it. Based on discoveries of the internal structure of the proton and its real intrinsic spin (Fig. 1) [1] [2] [3] [4], this paper defines a proton cycle network as a foundational principle of nuclear physics.

Fig. 1: Proton Bit Cycle Defines Real Intrinsic Spin

Wednesday, November 4, 2020

Physicists Had A Chance And They Blew It

Editorial
The first-ever derivation of so-called fundamental constants from first principles of quantum theory [1] was a historic event. The first of over 90 papers on binary mechanics appeared in 2010 in JBinMech. But the first paper deriving Planck's constant h was not published until 2015. So physicists around the world had some five years to win the century-long physics grand championship race. A major missed opportunity. They had a chance and they blew it. Instead, Binary Mechanics Lab (BML) crossed the finish line and won the greatest race in physics in over 100 years [2].

Table 1: Unexplained Measurements Wrongly Called "Fundamental Constants"

Sunday, November 1, 2020

Binary Mechanics Postulates

[Updated: Jan 10, 2025]
Abstract and Introduction
In "Binary mechanics", written in 1994 and published in 2010 [1], the eight-component wave function of a pair of relativisitic Dirac spinor equations of opposite handedness was parsed to define the spot cube model of space. With quantization of energy, space and time, dubbed full quantization, the spot cube provided a new system state representation, called the bit function, at a quantized time. With full quantization, infinitesimal increments in the Dirac equation pair were no longer applicable. Hence, time-development of the system state was defined in four bit operations. The postulates of binary mechanics define primary constants from full quantization and the mathematical definitions of the bit function and bit operations [2].

Fig. 1: Spot Cube Model of Space

Thursday, October 22, 2020

Fundamental Physical Constants Doctrine

Abstract and Introduction
The fundamental physical constants doctrine hides the failure of popular physical theories including legacy quantum mechanics and both special and general relativity. The so-called "fundamental constants" are in fact the greatest body of unexplained data in physics. The doctrine acts to obscure the now obvious fact that these unexplained observations comprise basic unsolved mysteries in physics. Instead of addressing these basic questions, the doctrine teaches that these observations are essentially a sort of "no-go zone" for theoretical physicists. First, these observations are typically confined to a short Appendix A in physics books, wrongly labelled "fundamental constants" (Fig. 1). Second, "natural units" in basic equations help hide the fact that the measured values of these "constants" remains unexplained although these values are used as "input parameters". Third, accepted interrelationships or dependencies among many of these constants indicate mathematically that they contain redundant information and could not be "fundamental". Finally, binary mechanics is thus far the only comprehensive physical theory to derive the values of the so-called fundamental constants from first principles [1].

Fig. 1: The Greatest Body Of Unexplained Data In Physics

Monday, June 29, 2020

Motion Law: Gravitation Edition

Abstract and Introduction
As a consequence of binary mechanics (BM) fundamentals [1], a motion law states that objects tend to move in the direction of higher vacuum energy density [2]. As background, topics discussed include particles as compositions of multiple quanta, the mechanism of particle movement as a flux of individual quanta [3], the most likely motion direction and the equivalence of the gravitational field within a solid object and a quanta density gradient in its perfect vacuum component [4]. Predictions from this model have been confirmed by experimental results of Alex L Dmitriev et al, reporting weight decease with a (1) heated brass rod, (2) heating a piezo ceramic pile, (3) laser injection in optical fibers and (4) in gyros proportional to spin frequency and with horizontal more than vertical spin axis. The role of temperature in gravity-like effects has now been studied in two broad categories: distant objects not in direct contact and the special case of a weighed object resting on a scale.

Fig. 1: Motion Law At Single Particle Level

Saturday, June 20, 2020

Fine Structure Constant Derivation

Abstract and Introduction
Some consequences of defining the fine structure constant α as the probability of an electromagnetic interaction with a charged particle are explored using the Binary Mechanics Lab Simulator (BMLS) v2.8. An alpha α composite variable was introduced: (S + V) / M0, where S and V are scalar (electrostatic) and vector (magnetic) event counts respectively and M0 is the number of M-type quanta (1-state bits with charge attribute) prior to application of time-development bit operations and eligible to be "source quanta" in the S and V bit operations [1]. In brief, this α definition is simply the observed probability that a M quanta is accelerated by an electrostatic (S) or magnetic (V) potential. The α variable was not constant, but varied as a function of quanta density in the simulated volume (Fig. 1), suggesting that α may have appeared to be constant if previous measurements were conducted at a quanta density of approximately 0.237 of maximum possible density. Proton-electron mass ratio was also found to occur at about the same quanta density suggesting that this density range may approximate laboratory conditions close to "standard temperature and pressure".

Fig. 1: Fine Structure Constant α vs Quanta Density

Friday, May 22, 2020

Proton Structure 3D Animation

Abstract and Introduction
The proton (hadron) bit cycle was rendered in a 3D animation illustrating features of the binary mechanics (BM) model of space [1] [2] and proton structure, discovered in 2011 [3] [4] and used in the first-ever derivation of Planck's constant from first principles of quantum theory in 2018 [5].

Fig. 1: Proton Bit Cycle Viewed Along Spin Axis

Legend: Spheres, 42 bit loci in matter d quark (dark red, green, blue), anti-matter d quark (light red, green, blue) and positron (grey) spot types. Brown bars, route of quanta in the proton cycle. Axis lines, X (blue), Y (pink) and Z (white) intersect at center of "home" spot cube, where the spin axis is approximately perpendicular to the page plane in this perspective.

Monday, May 4, 2020

Inertial Propulsion Mechanism

Abstract and Introduction
Inertial Propulsion may be described as conversion of angular momentum to linear momentum thus violating Newton’s mechanics in which these momentum types are separately conserved [1]. For example, Eric Laithwaite [2] and others have demonstrated translation motion of a gyro only when spinning called “precession”, as well as apparent levitation. Unlike Newton’s mechanics, the time-development laws of binary mechanics (BM) [3] [4] do not specifically require separate conservation of angular and linear momentum. However, energy (1-state bits called quanta) is conserved in BM. In fact, the BM time-development laws produce quanta motion alternating routinely between circular motion and translation and are the mechanism of inertial propulsion.

Fig. 1: Circular and Translation Quanta Motion in Electron Cycle

Legend: 3 spot units in electron spot (yellow). Centers of M and L bit loci size L cubes (white circles/arrows respectively) are equidistant from, and orthogonal to, the spin axis (grey circle) which is a spot cube solid diagonal (orthogonal to the spin and page planes).

Monday, February 24, 2020

Light Speed Derivation

Abstract
Physics literature presents equations in which a measured physical constant is expressed as one or more other measured physical constants. These expressions (1) show dependencies among so-called "fundamental" constants which are in fact unexplained observations and (2) are not derivations from first principles. That is, a true derivation from first principles cannot use any unexplained data as one or more "input" parameters. Adding to previous reports [1] [2], a procedure to derive light speed with unidirectional measurements is described based only on the first principles of binary mechanics including the time-development laws [3] and a physical interpretation of binary mechanical space [4].

Introduction
With first principles describing electron geometry, zero electron electric dipole moment was derived in 2011 [5] and confirmed by two different labs [6]. With the discovery of the proton (hadron) bit cycle in 2011 [7], the non-spherical proton shape was described, confirmed by proton scattering data [8].

Using the classical definition of total angular momentum, intrinsic electron spin and hence, Planck's constant, were derived in 2015 [9]. In 2018, Planck's constant and both electron and proton intrinsic spin where derived using a different method by summation of the angular momentum of each quanta motion in the electron and proton bit cycles [10]. Fractional and elementary charge derivation was based on analysis of the time-development scalar (electrostatic) bit operation [11] and paved the way to derive intrinsic electron magnetic moment based solely on first principles, the elementary charge derivation and the classical definition of magnetic dipole moment [12].

These first-ever derivations of previously unexplained constants required full quantization of energy, space and time, namely the units of measurement in physics (Fig. 1). A primary constant value for each unit of measurement could be assigned that was consistent with the full set of derivations -- mass M as energy expressed in kg, length L in meters and time T in seconds [13]. These three values may complete the list of primary constants, if fine-structure constant α in Fig. 1 can also be successfully derived from first principles [Keene, in preparation].