Tuesday, April 21, 2015

Elementary Particle Energies

Abstract and Introduction
The eight elementary particles consist of four matter particles -- electron (e-L) and three R-handed d quarks (dR, red, green, blue), and four antimatter particles -- positron (e+R) and three L-handed d quarks (dL, red, green, blue) [1] [2]. With quantization of space, time and energy in binary mechanics (BM) [1], each of these eight particles is associated with a spatial object called a spot which may contain zero to six 1-state bits of quantized energy [3]. If a simulation randomly seeds these spots with 1-state energy bits, each particle type would represent about one eighth (0.125) of the total energy. This exploratory, descriptive study reports the discovery that application of the four fundamental time-evolution bit operations [4] causes redistribution of energy among the particle types which then exhibit markedly different energy densities. In addition, the distribution of energy among lepton and quark particle types by these time-development laws varies as a function of overall bit density in a physical system (Fig. 1).

Fig. 1: Elementary Particle Energies vs Bit Density

Legend: Matter: electrons (e-L, dark blue) and three R d quarks (dR, yellow). Anti-matter: positrons (e+R, pink) and three L d quarks (dL, light blue). Distribution of elementary particle energy (vertical) changes as a function of overall bit density (horizontal). SVUF (left) and VSUF (right) bit operations order.

Methods and Results
A simulated 64x64x64 spot volume was incrementally increased in 1-state bit density starting near absolute vacuum (0.001), using the Binary Mechanics Lab Simulator v1.37.0, as described elsewhere [5] [6]. Bits randomly added to the simulated volume were distributed approximately equally to the spots representing the eight elementary particle types. Thus, at near zero proportion of maximum bit density at the left in Fig. 1, each graphed item starts at one eighth (0.125) of the total energy (1-state bits) populating the volume. About 1000 simulator Ticks were run to increase the proportion of maximum bit density to almost one. Notice that as the upper half of the bit density range commences to the right sides in Fig. 1, the proportion of total energy for each particle type eventually trends toward 0.125 and probably plasma or even completely uncondensed phases of energy may be represented.

Previous attempts to account for incidence of elementary particle types as a function of volume bit density focused on counting mite (fermion) bits only [6]. These studies revealed that matter prevalence over antimatter was an ongoing process in the present [7], addressing the previously unexplained matter-antimatter asymmetry phenomenon. In contrast, the present study counts all bits per spot type, both mites (fermion) and lites (boson) to reveal the remarkable distribution of total energy among particle types in Fig. 1.

Prior test runs showed that the three R-handed d quarks (red, green, blue) had approximately equal energy densities. The three L-handed d quarks also showed similar values. Thus, the dR (yellow) and dL (light blue) data in Fig. 1 represent the averages of the three types in each group. In sum, four types of energy spectrum as a function of volume energy density were identified and each type was associated with a single lepton (e-L or e+R) particle or group of three elementary d quark particles (dR or dL).

Gross inspection of Fig. 1 suggests two pairs of particle type energy spectrums over the entire bit density range from absolute vacuum to maximum possible energy density. First, the matter dR group spectrum is approximately the inverse of the anti-matter positron e+R spectrum. Thus, the time-development laws appear to favor populating dR positions in the proton bit cycle over positron positions [8]. Second, the antimatter dL group spectrum is inverse to some visible extent to the matter electron e-L again suggesting that some energy loss from electrons is accumulated in the dL spectrum. Note the dR and dL spectrums are averages of three particles and hence, their plot in Fig. 1 does not reflect the total number of 1-state bits (3x), compared to the single particle lepton spectrums.

Finally, the double dip in the electron spectrum reflected in the double peak in the L-handed d quark spectrum may fairly be described as a remarkable discovery.

Discussion
New Rosetta Stone. Each spot spatial object consists of three perpendicular spot units. A spot unit contains two binary bits -- mite (fermion) and lite (boson). Hence, each spot may contain zero to six bits and the pattern is called a bit function describing the system state. The fundamental bit operations (unconditional, scalar, vector and strong) applied in quantized time units t produce exact time development of the state of any physical system.

Analysis of the physical representation of the eight elementary particles has revealed that they are not as elementary as previously thought. Indeed, four types of spot unit were found to account for the eight so-called elementary particles (Fig. 2 from [2]) suggesting a new, more elemental level of analysis of physical phenomena -- perhaps the most exciting frontier for investigation in contemporary physics.

Fig. 2: Four Spot Unit Types

Could it be a mere coincidence that the four distinctly different elementary particle energy spectrums found in the present study map one-to-one to the four types of spot unit reported previously (Fig. 2)? Consider that the four energy spectrums and spot unit types were derived from completely different sources. The present results are empirical findings. The spot unit types were identified by some specific components each spot unit must have in order to implement the fundamental bit operations.

In summary, data show that four types of spatial objects called spot units are the fundamental building blocks of the universe and that each of these types is associated with an elementary particle category exhibiting a unique signature energy spectrum measured over the possible bit density range. For further investigation in this cutting-edge frontier in modern physics, one can think of dozens of top priority research proposals, Masters and PhD theses. A top priority is to demonstrate that any physical phenomenon can be duplicated by the time-evolution laws of BM and the correct bit operations order [9]. Thus, there are opportunities in all sub-specialties in physics.

Meanwhile, Back in the 20th Century. Let us go back to the past for a moment much as an anthropologist might presently visit a less advanced tribe to observe their superstitions. In a mind experiment, draw a vertical line in Fig. 1, say, somewhere between 0.3 and 0.4 maximum bit density to depict the latest efforts at facilities like CERN. The boosted LHC energy beams will see things along this vertical line of energy density -- a primitive, keyhole look at the big picture. News reports say new particles will be sought, but this seems completely trivial in comparison, given that the proton bit cycle [8] can be used to enumerate all possible hadron phenomena on a lap-top. Even worse, this research focus goes in the opposite direction -- using the LHC instead of a lap-top to itemize more macroscopic objects composed of the eight elementary particles. Meanwhile, in this 21st century, as the Standard Model is upgraded with quantized space, time and energy "installed", nuclear physics is becoming essentially a book-keeping exercise, releasing vast intellectual talent and resources in the physics community to address more fundamental questions in science. Will they turn around and look at more microscopic levels and address the challenge of understanding the smallest elementary objects in physics -- spot units?

References
[1] Keene, J. J. "Binary mechanics" J. Bin. Mech. July, 2010.
[2] Keene, J. J. "Spot unit components of elementary particles" J. Bin. Mech. October, 2014.
[3] Keene, J. J. "Physical interpretation of binary mechanical space" J. Bin. Mech. February, 2011.
[4] Keene, J. J. "Fundamental forces in physics" J. Bin. Mech. October, 2014.
[5] Keene, J. J. "If you want to keep your Higgs boson..." J. Bin. Mech. March, 2015.
[6] Keene, J. J. "Absolute maximum temperature" J. Bin. Mech. March, 2011.
[7] Keene, J. J. "Matter-antimatter asymmetry mechanism" J. Bin. Mech. October, 2014.
[8] Keene, J. J. "Proton and electron bit cycles" J. Bin. Mech. April, 2015.
[9] Keene, J. J. "Bit operations order" J. Bin. Mech. May, 2011.
© 2015 James J Keene