Tuesday, May 22, 2018

Zero Kelvin Particle States

[Updated: May 24, 2018]
Abstract and Introduction
Related to the momentum concept, many L type 1-state bits may represent future particle motion [1]. Toward precise definition of leptons and quarks, elementary particle states were studied at zero Kelvin where particle motion is zero [2] thereby removing this momentum-related component. Results confirm previous reports [3] [4] where eight elementary particles [5] may be clearly distinguished by their specific states (Figs. 1 to 3). To further assess the effect of extreme cooling on system state, two conditions were compared: 1) zero Kelvin with zero particle motion and 2) a greater energy density with higher temperature and particle motion (Figs. 4 and 5). These data provide specific event detection criteria which may be incorporated in system state time-evolution and analysis software.

Fig. 1: Summary: Elementary Particle States at Zero Kelvin

Monday, April 30, 2018

Proton-Electron Mass Ratio Derivation

[Updated: May 16, 2018]
Abstract and Introduction
Breaking news: Binary Mechanics Lab (BML) announces the first-ever derivation of the proton-electron mass ratio (Fig. 1). The derivation depended only on first principles of the comprehensive, fundamental physical theory known as binary mechanics (BM) [1] [2], without use of any mathematical constants or physical constants based on experimental measurements. A major consequence of this milestone discovery is two operational definitions of mass: 1) a fundamental, invariant value as a function of electron mass me and 2) the observed proton mass which depends on energy (1-state bit) density.

Fig. 1: First-ever Proton-Electron Mass Ratio Derivation

Thursday, April 26, 2018

Particle States Evolution

[Updated: May 12, 2018]
Abstract and Introduction
The effect of the time-evolution bit operations on elementary particle states [1] was examined by comparing proportions of spot states for each particle (spot type) with expected proportions based on random distribution of 1-state bits. Results include: 1) reduced probabilities of absolute vacuum and 2) increased probabilities of selected spot states (M and L bit composition) for each particle type, replicating previous findings [2]. That is, the time-development bit operations alter system state (the bit function) by concentrating 1-state M and L bits in selections of specific spot states in each elementary particle (spot type). These data define 1) a specific role of the magnetic force (vector bit operation) in particle differentiation and 2) a possible operational definition of "magnetic monopoles".

Fig. 1: Expected and Observed Particle Probabilities, E = 0, 1, 2

Sunday, April 15, 2018

Bit Function Analysis

Abstract and Introduction
The Binary Mechanics Lab (BML) software release for Bit Function Analysis (BFA) may mark a milestone particle physics methodology advance. Particle interactions and effects of various independent variables such as electromagnetic potentials may now be viewed and assessed directly thereby reducing reliance on operational definition from distant event detector outputs, as currently used at particle accelerator sites such as CERN. This article describes use of the BFA program and some preliminary results which suggest that electron and quark particles and their energy levels may now be rigorously defined through direct observation.

Fig. 1: Particle Physics Methodology Milestone

Tuesday, April 10, 2018

Hurricane Hits Physics

Abstract and Introduction
On Sept. 18, 2017, Cat 5 hurricane Maria destroyed Binary Mechanics Lab (BML), located in the Commonwealth of Dominica in the Caribbean West Indies windward islands. just as BML was emerging as the leading fundamental physics lab in the world (see e.g. [1] [2] [3]). For over six months, BML had no utility-supplied electric power and internet. At present, BML has been largely rebuilt. This article reviews upcoming BML activities, including research publications and software.

Fig. 1: Getting Started: Bit Function Analysis

Tuesday, May 24, 2016

Matter Creation Sequel

Abstract and Introduction
Matter creation based on electron and proton counts was examined after a simulated volume cooled to zero degrees Kelvin as a function of initial energy density. Findings include (1) lowest matter creation occurred starting from maximum energy density (1.0) and "perfect vacuum" density (0.1), (2) greatest matter creation was produced when starting from 0.3 energy density and (3) the SUVF bit operations order produced the greatest matter creation, compared to the VSUF and SVUF orders.

Studies using the boosted energies of the Large Hadron Collider at CERN may provide only a primitive, keyhole view of possible events in the entire energy density range from absolute vacuum to absolute maximum energy density. Absolute vacuum and absolute maximum energy density are consequences of quantization of space and energy in binary mechanics (BM) [1] aka "full quantum mechanics". Energy was quantized by limiting spatial objects called bit loci to 0-states or 1-states. Then, absolute vacuum could be defined as a volume with all 0-state bit loci [2]. Note that so-called "perfect vacuum" may contain up to about 10% 1-state bit loci and is therefore not "empty space" (e.g., [3]). At the other extreme, absolute maximum energy density is achieved with all bit loci in a volume in the 1-state. The BM system state, named the bit function, is the spatial distribution of 1- and 0-state bits. With space and time quantization, infinitesimal operators in "partial quantum mechanics" (QM) were not applicable mathematically. Thus, four bit operations -- unconditional (U), scalar (S), vector (V) and strong (F), were based on relativistic Dirac spinor equations [1] [4] implementing time-development of the system state. Since results depend on bit operations order, only one order can be physically correct [5].

Wednesday, May 11, 2016

Matter Creation

Abstract and Introduction
Identified matter-antimatter asymmetry mechanisms have indicated that predominance of matter over antimatter results from ongoing processes in the present [1], not from events in the distant past in the early universe. With space-time quantization in binary mechanics (BM) [2], quantum mechanics (QM) time-development operators with infinitesimal increments in position or time were no longer applicable mathematically. Hence, four bit operations -- unconditional (U), scalar (S), vector (V) and strong (F), were defined based on relativistic Dirac spinor equations. Since results depend on bit operations order [3], a major research objective is to determine the one and only physically correct bit operations order. The present research question was: which bit operation orders favor matter creation in present real-time? This study found that VSUF, SVUF and SUVF orders produce matter creation (Figs. 1 and 2) and eliminated the USVF, UVSF and VUSF orders based on this criterion.

Fig. 1: Matter Creation: Electrons

Legend: 1-state bit density: probability a bit locus is in 1-state. Exp: expected based on random distribution of 1-state bits. SUVF, SVUF, VSUF: bit operations order. Red arrows: absolute maximum temperature (maximum S + V counts).

Saturday, May 7, 2016

Quantization Asymmetry

Quantization asymmetry has been defined as physical theories at the atomic and nuclear levels that quantize almost everything except space and time [1]. The continuous space-time assumption in classical and Standard Model (SM) physics and in General Relativity (GR) presently has no known justification other than tradition and superstition. Binary mechanics (BM) [2] may be seen as an instance of quantization asymmetry breaking, so to speak, since it implements quantization symmetry. In 2010, publication of the postulates of BM and some of their consequences began a transition in physics from quantization asymmetry to symmetry. This article outlines some major headlines in this developing story that has impact in virtually all sub-specialities in physics.

Fig. 1: What Death of a Theory Looks Like

Tuesday, May 3, 2016

Particle Motion Representation

Abstract and Introduction
Observed properties of all so-called elementary particles arise from just four variations of a spatial object named a spot unit [1] [2] [3], among the smallest building blocks underlying physical phenomena described to date. A spot unit contains two binary bits named mite (M) and lite (L) with 0 or 1 allowed states, each located in a cubic bit locus of dimension d, a fundamental length constant [4], quantizing energy and space respectively (Fig. 1).
Fig. 1: Spot Unit

The M bits have an electric charge attribute and are the electrostatic potential field. The first-ever calculations of Planck's constant h and of electron magnetic moment from first principles [4] [5] suggests that a mass attribute of energy is associated with M or mite bits. The L or lite bits are the magnetic potential field. With space and time quantization, infinitesimal operators in quantum mechanics (QM) are not mathematically applicable. Hence, four time-development bit operations were based on relativistic Dirac spinor equations [6]. One of these, the vector bit operation, accelerates 1-state M bits to L bit loci in a quantized time tick t [7]. Modulo 2 parity of spot unit integer position coordinates determines spot unit direction (eq. 6 in [6]) and hence, motion direction for the scalar, vector and unconditional bit operations. This article presents a demonstration that 1-state L bits represent a motion attribute of energy coding length and direction of 1-state bit position change in subsequent time ticks.

Thursday, April 28, 2016

LIGO Gravity Wave Mechanism

Abstract and Introduction
A gravitational wave [1] observed at LIGO (Laser Interferometer Gravitational-Wave Observatory) [2] may provide experimental confirmation of two major results of binary mechanics (BM) [3]: (1) objects tend to move toward regions of higher vacuum energy density [4] [5] [6] and (2) light speed in vacuum decreases at reduced vacuum energy density [7] [8]. This paper outlines how the BM model of gravitational effects and the land-mark light speed discovery may fully account for the LIGO gravitational wave data.

Table 1: LIGO Gravitational Wave Mechanism and Detection

Sunday, March 6, 2016

BML Simulator Interface

This note announces release of a more user-friendly interface for the Binary Mechanics Lab Simulator (BMLS) [1], which may be downloaded by clicking the link.

Fig. 1: BML Simulator Interface Screen Shot (Expt 1)

Sunday, February 28, 2016

BML Simulator Batch Mode

This note announces release of a "batch mode" upgrade to the Binary Mechanics Lab Simulator (BMLS) v1.39 which may be downloaded by clicking the link. In addition to the hotspot 1.39 simulator, the download contains five *.bat files in its root directory (mine is c:\physics\hotspot) and a \bat subdirectory containing five examples of input parameter files in Microsoft text format (lines delineated with carriage return {13} and line feed {10}, 0D 0A sequences when viewed in hex format).

Fig. 1: Input Parameter File Format