by James J Keene PhD
Journal of Binary Mechanics, 21st century physics with quantized space, time and energy
Sunday, September 25, 2011
Physics News: Faster Than Light
The physics world has been aroused from a long intellectual slumber by the report from CERN investigators that some muon neutrinos may travel faster than the speed of light [1], possibly violating an essential premise of Einstein's Special Theory of Relativity. Confirmation and hopefully replication of this result would lend support for the long-standing prediction of binary mechanics (BM) [2] that absolute maximum velocity at the single bit level is substantially greater than the observed speed of light (e.g., [3] [4] [5]). Consequences of this BM prediction might result in a number of situations in which apparent faster-than-light motion could be observable.
Wednesday, September 21, 2011
Physics News: Electron Shape
Physics News will be a new feature of this informal journal of binary mechanics (BM) [1] highlighting research supporting predictions of the theory. This installment considers the BM prediction that the electric dipole moment (EDM) of the electron is exactly zero. A recent report by Hudson et. al. in Nature on "Improved measurement of the shape of the electron" [2] states: "This result, consistent with zero, indicates that the electron is spherical at this improved level of precision." In an email exchange with one of the six co-authors of this paper, I wrote:
In binary mechanics (e.g., "Physical interpretation of binary mechanical space" ... [3]), which postulates an internal structure for the electron, the constituent bits (called mites) "spin" in a plane orthogonal to the spin axis, where each of three possible equally-spaced mite bit loci is equidistant from the particle's center of mass and symmetrically located around the spin axis.
sciencedaily.com reporting on your Nature letter states (AFAIK, their words, not yours): "If the electrons were not perfectly round then, like an unbalanced spinning-top, their motion would exhibit a distinctive wobble, distorting the overall shape of the molecule. The researchers saw no sign of such a wobble."
Saturday, September 17, 2011
A Law of Motion
Several consequences of the postulates of binary mechanics (BM) [1] may be summarized in a basic physics law of motion, namely that objects tend to move in the direction of higher bit density. Fig. 1 illustrates this idea for one spatial dimension.
Fig. 1: A Law of Motion
This working hypothesis of a fundamental law of motion in physics is applicable for objects ranging from elementary particles to astronomical objects such as planets and entire galaxies. This note reviews some results and logic supporting this hypothesis.
This working hypothesis of a fundamental law of motion in physics is applicable for objects ranging from elementary particles to astronomical objects such as planets and entire galaxies. This note reviews some results and logic supporting this hypothesis.
Subscribe to:
Posts (Atom)